Cluster dynamical mean field theory of quantum phases on a honeycomb lattice

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlated bosons on a lattice: Dynamical mean-field theory for Bose-Einstein condensed and normal phases

We formulate a bosonic dynamical mean-field theory B-DMFT which provides a comprehensive, thermodynamically consistent framework for the theoretical investigation of correlated lattice bosons. The B-DMFT is applicable for arbitrary values of the coupling parameters and temperature and becomes exact in the limit of high spatial dimensions d or coordination number Z of the lattice. In contrast to...

متن کامل

Dynamical mean-field theory for quantum chemistry.

The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are co...

متن کامل

Cluster dynamical mean field theory of the Mott transition.

We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator,...

متن کامل

Dynamical Mean Field and Dynamical Cluster Approximations

We present a pedagogical discussion of the dynamical mean field and dynamical cluster approximations. PACS: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2012

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.86.045105